
Relational Algebra and Relational
Calculus

Relational Algebra and Relational Calculus

• Three components of Relational Data

Model:

– a structural part;

– a set of integrity rules;

– a manipulative part (Query Languages).

Formal Relational Query Languages

• Two mathematical Query Languages form
the basis for “real” languages (e.g. SQL):
– Relational Algebra:

– Procedural language

– More operational, very useful for representing
execution plans

– Relational Calculus:

– Non-Procedural Language

– Lets users describe what they want, rather
than how to compute it

Basic Operators (Relational Algebra)

• Unary Operators

1. Select

2. Project

• Binary Operators

3. Union

4. Intersection

5. Set Difference

6. Cartesian Product

Selection (or Restriction)

• The Selection operation works on a
single relation R and defines a relation
that contains only those tuples of R that
satisfy the specified condition (predicate)

• Notation is Greek symbol sigma:

 PREDICATE(RELATION)

Selection Example

• List all staff with a salary greater than £10,000

σsalary > 10000(Staff)

• The input relation is Staff and the predicate is:

salary > 10000

• The Selection operation defines a relation containing
only those Staff tuples with a salary greater than
£10,000. The result of this operation is shown on
next slide

σsalary > 10000(Staff)

Selection

• More complex predicates can be

generated using the logical operators:

∧ (AND), ∨ (OR) and ~ (NOT)

Projection

• The Projection operation works on a single
relation R and defines a relation that contains a
vertical subset of R, extracting the values of
specified attributes and eliminating duplicates.

• Notation:

 a1, a2, ..., ak (R)
where a1 ... ak are attribute names and R is a relation

name

Projection (Example)

• Produce a list of salaries for all staff, showing only
the staffNo, fName, lName, and salary details.

staffNo, fName, lName, salary(Staff)

• In this example, the Projection operation defines
a relation that contains only the designated Staff
attributes staffNo, fName, lName, and salary, in
the specified order

• The result of this operation is shown on next slide

Projecting the Staff relation over the staffNo,
fName, lName, and salary attributes

Set Operations
Union R ∪ S

• The union of two relations R and S defines a
relation that contains all the tuples of R and S
both, duplicate tuples being eliminated

• R and S must be union-compatible

Union

• Union-Compatibility

– Union is possible only if the schemas of the two
relations match, that is, if they have the same
common attribute(s) having the same domain

• Union is Commutative

R U S = S U R

© Virtual University of Pakistan

Union Example

C2345 P1245 3 Operating Sytems

C3456 P1245 4 Database Systems

C4567 P9873 4 Financial Management

C5678 P9873 3 Money & Capital Market

CID ProgID Cred_Hrs CourseTitle

C4567 P9873 4 Financial Management

C8944 P4567 4 Electronics

CID ProgID Cred_Hrs CourseTitle

Course1

Course2

Union Example

C2345 P1245 3 Operating Sytems

C3456 P1245 4 Database Systems

C4567 P9873 4 Financial Management

C5678 P9873 3 Money & Capital Market

CID ProgID Cred_Hrs CourseTitle

C8944 P4567 4 Electronics

Course 1 U Course 2

Intersection R ∩ S

• The Intersection operation defines a relation
consisting of the set of all tuples that are in
both R and S

• R and S must be union-compatible

• Intersection is Commutative

R ⋂ S = S ⋂ R

Intersection (⋂) Example

C4567 P9873 4 Financial Management

CID ProgID Cred_Hrs CourseTitle

Course 1 ⋂ Course 2

Set Difference R − S

• The Set difference operation defines a relation
consisting of the tuples that are in relation R,
but not in S

• R and S must be union-compatible

• Note that:

R ∩ S = R − (R − S)

© Virtual University of Pakistan

Difference (-) Example

C2345 P1245 3 Operating Sytems

C3456 P1245 4 Database Systems

C4567 P9873 4 Financial Management

C5678 P9873 3 Money & Capital Market

CID ProgID Cred_Hrs CourseTitle

C4567 P9873 4 Financial Management

C8944 P4567 4 Electronics

CID ProgID Cred_Hrs CourseTitle

Course1

Course2

Difference (-) Example

C2345 P1245 3 Operating Sytems

C3456 P1245 4 Database Systems

C5678 P9873 3 Money & Capital Market

CID ProgID Cred_Hrs CourseTitle

Course1 – Course2

Cartesian Product R × S

• Sets do not have to be union compatible

• The Cartesian product operation defines a
relation that is the concatenation of every tuple
of relation R with every tuple of relation S

• Also called “cross product”

Cartesian Product (X) Example

Course X Registration

C3456 Database Systems

C4567 Financial Management

C5678 Money & Capital Market

CID CourseTitle

S101 Ali Tahir

S103 Farah Hasan

SID StudName

Course Registration

Cartesian Product (X) Example

C3456 Database Systems

C4567 Financial Management

C5678 Money & Capital Market

CID CourseTitle

S101 Ali Tahir

S101 AliTahr

SID StudName

C3456 Database Systems

C4567 Financial Management

C5678 Money & Capital Market

S101 Ali Tahir

S103 Farah Hasan

S103 Farah Hasan

S103 Farah Hasan

Cartesian Product

• The Cartesian product operation multiplies two
relations to define another relation consisting of all
possible pairs of tuples from the two relations

• If one relation has I tuples and N attributes and the
other has J tuples and M attributes, the Cartesian
product relation will contain (I * J) tuples with
(N + M) attributes

• It is possible that the two relations may have
attributes with the same name. In this case, the
attribute names are prefixed with the relation name
to maintain the uniqueness of attribute names
within a relation

Cartesian Product Example

• List the names and comments of all clients who
have viewed a property for rent

• Client relation stores names of clients

• Viewing relation stores comments

• To obtain the list of clients and the comments on
properties they have viewed, we need to
combine these two relations:

(clientNo, fName, lName(Client)) ×

(clientNo, propertyNo, comment(Viewing))

X

(clientNo, fName, lName(Client)) ×
(clientNo, propertyNo,comment(Viewing))

Cartesian Product Example

• Resultant relation (in the previous slide)
contains more information while we need
tuples where Client.clientNo =
Viewing.clientNo

σClient.clientNo = Viewing.clientNo(

(clientNo, fName, lName(Client)) ×

(clientNo, propertyNo, comment(Viewing))

)

Restricted Cartesian product of
Client and Viewing relations

σClient.clientNo = Viewing.clientNo(

(clientNo, fName, lName(Client)) ×
(clientNo, propertyNo, comment(Viewing))

)

Decomposing Complex Operations

• We can decompose such operations into a series of smaller relational
algebra operations and give a name to the results of intermediate
expressions.

• We use the assignment operation, denoted by ←, to name the results
of a relational algebra operation.

• We could rewrite the previous operation as follows:

TempClient(clientNo, fName, lName) ←clientNo, fName, lName(Client)

TempViewing(clientNo, propertyNo, comment) ← clientNo, propertyNo,

comment(Viewing)

Comment(clientNo, fName, lName, vclientNo, propertyNo, comment) ←
TempClient × TempViewing

Result ← σclientNo = vclientNo(Comment)

Join Operations

• Typically, we want only combinations of the
Cartesian product that satisfy certain conditions

• Hence we use a Join operation instead of the
Cartesian product operation

• Combines two relations to form a new relation

• One of the essential operations in the relational
algebra

Types of Join Operations

1. Theta join

2. Equijoin (a particular type of Theta join)

3. Natural join

4. Outer join

5. Semijoin

Theta join (-join)

• Defines a relation that contains tuples satisfying
the predicate F from the Cartesian product of R
and S

• The predicate F is of the form R.ai S.bi where
may be one of the comparison operators: <, ≤, >,
≥, =, ≠

R SF

Theta join (-join)

• We can rewrite the Theta join in terms of the
basic Selection and Cartesian product
operations:

R SF = σF (R × S)

• The degree of a Theta join is the sum of the
degrees of the operand relations R and S

Equijoin Operation
• In the case where the predicate F contains only equality (=), the

term Equijoin is used instead

Example:
• List the names and comments of all clients who have viewed a

property for rent
• In the previous slides, we used the Cartesian product and

Selection operations to obtain this list.
• However, the same result is obtained using the Equijoin

operation:

(clientNo, fName, lName(Client)) Client.clientNo = Viewing.clientNo

(clientNo, propertyNo, comment(Viewing))

Equijoin

• Rows are joined on the basis of values of a

common attribute between the two relations

• Rows having the same value in the common

attribute are joined

• Common attributes appear twice in the
output

• Common attribute with the same name is
qualified with the relation name in the output

ranksalarydeptfacNamefacId

F5678

F4567

F3456

F2345

32000

27000

23000

21000

ProfessorMNGSamad

Asso ProfENGAyesha

Asso ProfCSETahir

lecturerCSEUsman

COURSE

F2345Introduction to

Accounting

C3425

F4567Money & Capital

Market

C5678

Financial

Management

C4567

F2345Database SystemsC3456

facIdcrTitlecrCode

FACULTY

Equijoin Example

FACULTY FACULTY.facId = COURSE.facId COURSE

lecturer21000CSEUsmanF2345

Asso Prof27000ENGAyeshaF4567

lecturer21000CSEUsmanF2345

RanksalarydeptfacNameFACULTY.

facId

F2345Introduction to

Accounting

C3425

F4567Money & Capital
Market

C5678

F2345Database SystemsC3456

COURSE.
facId

crTitlecrCode

Equijoin Example

FACULTY FACULTY.facId = COURSE.facId COURSE

Natural Join

• Also called simply the join

• The most general form of join

• The Natural join is an Equijoin of the two
relations R and S over all common attributes x

• One occurrence of each common attribute is
eliminated from the result

R S

Natural Join Example

FACULTY COURSE

ranksalarydeptfacNamefacId

F5678

F4567

F3456

F2345

32000

27000

23000

21000

ProfessorMNGSamad

Asso ProfENGAyesha

Asso ProfCSETahir

lecturerCSEUsman

COURSE

F2345Introduction to

Accounting

C3425

F4567Money & Capital

Market

C5678

Financial

Management

C4567

F2345Database SystemsC3456

facIdcrTitlecrCode

FACULTY

lecturer21000CSEUsmanF2345

Asso Prof27000ENGAyeshaF4567

lecturer21000CSEUsmanF2345

RanksalarydeptfacNamefacId

Introduction to

Accounting

C3425

Money & Capital
Market

C5678

Database SystemsC3456

crTitlecrCode

Natural Join Example

FACULTY COURSE

Outer Joins

• Often in joining two relations, a tuple in one
relation does not have a matching tuple in the
other relation; in other words, there is no
matching value in the join attributes

• We may want tuples from one of the relations
to appear in the result even when there are no
matching values in the other relation. This may
be accomplished using the Outer join.

• Types:
– Left Outer Join
– Right Outer Join
– Full Outer Join

Left Outer Join R S

• The Left Outer Join is a join in which tuples
from R that do not have matching values in
the common attributes of S are also included
in the result relation. Missing values in the
second relation are set to null

• The advantage of an Outer join is that
information is preserved, that is, the Outer
join preserves tuples that would have been
lost by other types of join

Left Outer Join
Example

FACULTY LEFT JOIN COURSE

ranksalarydeptfacNamefacId

F4567

F3456

F2345

F2345

27000

23000

21000

21000

Asso ProfENGAyesha

Asso ProfCSETahir

lecturerCSEUsman

lecturerCSEUsman

Money & Capital Market

. To Accounting

C5678

F2345Intro. To AccountingC3425

F2345Database SystemsC3456

facIdcrTitlecrCode

F5678 32000 ProfessorMNGSamad

F4567

ranksalarydeptfacNamefacId

F5678

F4567

F3456

F2345

32000

27000

23000

21000

ProfessorMNGSamad

Asso ProfENGAyesha

Asso ProfCSETahir

lecturerCSEUsman

COURSE

F2345Introduction to

Accounting

C3425

F4567Money & Capital

Market

C5678

Financial

Management

C4567

F2345Database SystemsC3456

facIdcrTitlecrCode

FACULTY

Right Outer Join R S

Same as the left, but keep tuples from the
“right” relation

Right Outer
Join Example

F2345

Money & Capital Market

.

Money & Capital
Market

ranksalarydeptfacNamefacId

F2345

F4567

F2345

21000

27000

21000

lecturerCSEUsman

Asso ProfENGAyesha

lecturerCSEUsman

F2345

F4567C5678

Database SystemsC3456

facIdcrTitlecrCode

Intro. To AccountingC3425

Financial ManagementC4567

ranksalarydeptfacNamefacId

F5678

F4567

F3456

F2345

32000

27000

23000

21000

ProfessorMNGSamad

Asso ProfENGAyesha

Asso ProfCSETahir

lecturerCSEUsman

COURSE

F2345Introduction to

Accounting

C3425

F4567Money & Capital

Market

C5678

Financial

Management

C4567

F2345Database SystemsC3456

facIdcrTitlecrCode

FACULTY

Full Outer Join

All matching tuples plus all non-matching tuples
from both relations

Full Outer Join
Example

F5678 32000 ProfessorMNGSamad

Financial ManagementC4567

Money & Capital Market

.

Money & Capital
Market

ranksalarydeptfacNamefacId

F3456

F4567

F2345

F2345

23000

27000

21000

21000

Asso ProfCSETahir

Asso ProfENGAyesha

lecturerCSEUsman

lecturerCSEUsman

F4567C5678

F2345

Database SystemsC3456

facIdcrTitlecrCode

Intro. To AccountingC3425

F2345

ranksalarydeptfacNamefacId

F5678

F4567

F3456

F2345

32000

27000

23000

21000

ProfessorMNGSamad

Asso ProfENGAyesha

Asso ProfCSETahir

lecturerCSEUsman

COURSE

F2345Introduction to

Accounting

C3425

F4567Money & Capital

Market

C5678

Financial

Management

C4567

F2345Database SystemsC3456

facIdcrTitlecrCode

FACULTY

48

Semijoin R S

• A semijoin from Ri to Rj on attribute A can be

denoted as Rj Ri It is used to reduce the data

transmission cost
• Computing steps:

1) Project Ri on attribute A (A Ri) and ship this
projection (a semijoin projection) from the
site of Ri to the site of Rj ;

2) Reduce Rj to Rj’ by eliminating tuples where
attribute A are not matching any value in Ri[A]

F

49

Semijoin Example

3

4

5

7

8

9

A C

R2

A B

1

2

4

5

3 6

R1

Site 1
Site 2

1

2

3

R1[A]

projection
Ship(3)

3 7
R2’

reduce

Division Operation R ÷ S

• Suppose C is the set of attributes of R that are not
attributes of S

• The Division operation defines a relation over the
attributes C that consists of the set of tuples from
R that match the combination of every tuple in S

• We can express the Division operation in terms of
the basic operations:

T1← C (R)

T2← C ((T1 × S) − R)

T ← T1 − T2

Division Operation V ÷ W Example
Let C is the set of attributes of V that are not attributes of W.

Hence C = attribute A

V W T1← A (V) T1 X W (T1 X W) – V T2← A ((T1 × W) − V) T ← T1 − T2

T1← C (R)

T2← C ((T1 × S) − R)

T ← T1 − T2

A B

a 1

a 2

b 1

b 2

c 1

B

1

2

A

a

a

b

b

c

A B

a 1

a 1

b 1

b 1

c 1

a 2

a 2

b 2

b 2

c 2

A B

c 2

A

c

A

a

b

Examples of Division A/B

sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2
s4 p2
s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3

More Examples of Relational Algebra Queries
Find names of sailors who’ve reserved boat #103

Solution1: 𝑇𝑒𝑚𝑝1 ← 𝜎𝑏𝑖𝑑=103 (𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠)
𝑇𝑒𝑚𝑝2 ← (𝑇𝑒𝑚𝑝1⋈ 𝑆𝑎𝑖𝑙𝑜𝑟𝑠)

𝜋 𝑠𝑛𝑎𝑚𝑒 (𝑇𝑒𝑚𝑝2)

Solution2: 𝜋 𝑠𝑛𝑎𝑚𝑒 (𝜎𝑏𝑖𝑑=103 (𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠 ⋈ Sailors))

Solution3: 𝜋 𝑠𝑛𝑎𝑚𝑒 ((𝜎𝑏𝑖𝑑=103 (𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠)) ⋈ Sailors)

sid sname rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35.0

64 Horatio 7 35.0

71 Zorba 10 16.0

74 Horatio 9 35.0

85 Art 3 25.5

95 Bob 3 63.5

sid bid day

22 101 10/10/98

22 102 10/10/98

22 103 10/8/98

22 104 10/7/98

31 102 11/10/98

31 103 11/6/98

31 104 11/12/98

64 101 9/5/98

64 102 9/8/98

74 103 9/5/98

Reserves

Sailors

bid bname color

101 Interlake Blue

102 Interlake Red

103 Clipper Green

104 Marine Red

Boats

Find names of sailors who’ve reserved a red boat

• Information about boat color only available in
Boats; so need an extra join:

 sname color red
Boats serves Sailors((

' '
) Re)

=

❖ A more efficient solution:

 sname sid bid color red
Boats s Sailors(((

' '
) Re))

=

A query optimizer can find this, given the first solution!

Summary

• Relational algebra is more operational; useful
as internal representation for query evaluation
plans

• Several ways of expressing a given query; a
query optimizer should choose the most
efficient version

Relational Calculus

Relational Calculus

• Relational calculus is a non-

procedural formal data manipulation

language

• Simply specifies what data should be

retrieved

Relational Calculus

• There is no description of how to
evaluate a query

• A Relational Calculus query specifies
what is to be retrieved rather than
how to retrieve it

• Relational Calculus takes its name from
a branch of symbolic logic called
predicate calculus

Relational Calculus
• In predicate calculus, a predicate is a truth-valued

function with arguments
• When we substitute values for the arguments, the

function yields an expression, called a proposition, which
can be either true or false

• For example, the sentences:
– ‘John White is a member of staff’ and
– ‘John White earns more than Ann Beech’

• are both propositions, since we can determine whether
they are true or false.

• In the first case, we have a function, ‘is a member of
staff’, with one argument (John White)

• In the second case, we have a function, ‘earns more
than’, with two arguments (John White and Ann Beech)

Relational Calculus
• If a predicate contains a variable, as in ‘x is a

member of staff’, there must be an associated
range for x

• When we substitute some values of this range
for x, the proposition may be true; for other
values, it may be false

• For example, if the range is the set of all
people and we replace x by John White, the
proposition ‘John White is a member of staff’
is true

• If we replace x by the name of a person who is
not a member of staff, the proposition is false

Relational Calculus

• Comes in two forms

1. Tuple Relational Calculus

2. Domain Relation Calculus

Tuple Relational Calculus

• Here we are interested in finding tuples for which
a predicate is True

• The calculus is based on the use of tuple variables
• A tuple variable is a variable that ‘ranges over’ a

named relation: that is, a variable whose only
permitted values are tuples of the relation

• For example, to specify the range of a tuple
variable S over the Staff relation, we write:

Staff(S)
• To express the query ‘Find the set of all tuples S

such that F(S) is true’, we can write:
{S | F(S)}

Tuple Relational Calculus

• F is called a formula (well-formed formula, or
wff in mathematical logic)

• For example, to express the query ‘Show all
attributes of staff earning more than £10,000’,
we can write:

{S | Staff(S) ∧ S.salary > 10000}

• S.salary means the value of the salary attribute
for the tuple variable S

• To retrieve a particular attribute, such as salary,
we would write:

{S.salary | Staff(S) ∧ S.salary > 10000}

Branch

Expressions and formulae

An expression in the tuple relational calculus has
the following general form:

{S1.a1, S2.a2,...,Sn.an | F(S1, S2,..., Sm)} m ≥ n

• where S1, S2, ... , Sn ..., Sm are tuple variables

• each ai is an attribute of the relation over
which Si ranges

• F is a formula

Expressions and formulae

A (well-formed) formula is made out of one or more atoms, where an
atom has one of the following forms:

• R(Si)

where Si is a tuple variable and R is a relation

• Si.a1 Sj.a2

where Si and Sj are tuple variables

a1 is an attribute of the relation over which Si ranges

a2 is an attribute of the relation over which Sj ranges

 is one of the comparison operators (<, >, ≥, ≤, ≠, =)

• Si.a1 c

where Si is a tuple variable

a1 is an attribute of the relation over which Si ranges

c is a constant from the domain of attribute a1

 is one of the comparison operators

The Existential and Universal Quantifiers

• There are two quantifiers we can use with
formulae to tell how many instances the
predicate applies to

• The existential quantifier ∃ (‘there exists’) is
used in formulae that must be true for at least
one instance, such as:

Staff(S) ∧ (∃B) (Branch(B) ∧

(B.branchNo = S.branchNo) ∧ B.city = ‘London’)

• This means, ‘There exists a Branch tuple that
has the same branchNo as the branchNo of the
current Staff tuple, S, and is located in London’

The Universal Quantifier

• The universal quantifier ∀ (‘for all’) is used in
statements about every instance, such as:

(∀B) (B.city ≠ ‘Paris’)

• This means, ‘For all Branch tuples, the city is
not Paris’

OR ~(∃B) (B.city = ‘Paris’)

which means, ‘There is not a single branch with
city equals to Paris’

Bound Variables & Free Variables

• Tuple variables that are qualified by ∀ or ∃ are
called bound variables, otherwise the tuple
variables are called free variables

• The only free variables in a relational calculus
expression should be those on the left side of
the bar (|)

• For example, in the following query:

{S.fName, S.lName | Staff(S) ∧ (∃B) (Branch(B) ∧
(B.branchNo = S.branchNo) ∧ B.city = ‘London’)}

• S is the only free variable and S is then bound
to each tuple of Staff relation

Tuple Relational Calculus Examples

• List the names of all managers who earn more
than £25,000.

{S.fName, S.lName | Staff(S) ∧ S.position =
‘Manager’ ∧ S.salary > 25000}

• (b) List the staff who manage properties for
rent in Glasgow

{S | Staff(S) ∧ (∃P) (PropertyForRent(P) ∧
(P.staffNo = S.staffNo) ∧ P.city = ‘Glasgow’)}

Safety of Expressions

• It is possible for a calculus expression to generate an
infinite set. For example

{S | ~ Staff(S)}

• Means the set of all tuples that are not in the Staff
relation

• Such an expression is said to be unsafe

• To avoid this, we have to add a restriction that all values
that appear in the result must be values in the domain of
the relation(s) appearing in the expression

Domain Relational Calculus

• We also use variables but in this case the
variables take their values from domains of
attributes rather than tuples of relations

• General form of domain relational calculus
expression:

{d1, d2, . . . , dn | F(d1, d2, . . . , dm)} m ≥ n

• where d1, d2, . . . , dn represent domain variables

Domain Relational Calculus

• Find the first and last names of all managers who
earn more than £25,000

• {fN, lN | (∃sN, posn, gender, dob, sal, bN)

(Staff(sN, fN, lN, posn, gender, dob, sal, bN)

∧ posn = ‘Manager’ ∧ sal > 25000)}

• Here, each attribute is given a (variable) name

Domain Relational Calculus

• When the domain relational calculus is restricted to
safe expressions, it is equivalent to the tuple
relational calculus restricted to safe expressions,
which in turn is equivalent to the relational algebra

• This means that for every relational algebra
expression there is an equivalent expression in the
relational calculus (tuple or domain relational
calculus), and for every relational calculus
expression there is an equivalent relational algebra
expression

Chapter Summary

• Relational algebra and relational calculus are equivalent to one
another: for every expression in the algebra, there is an equivalent
expression in the calculus (and vice versa).

• Relational calculus is used to measure the selective power of
relational languages

• A language (e.g. SQL) that can be used to produce any relation
which can be derived using the relational calculus is said to be
relationally complete

• Most relational query languages are relationally complete but
have more expressive power than the relational algebra or
relational calculus because of additional operations such as
calculated summary and ordering functions

