Relational Algebra and Relational
Calculus

Relational Algebra and Relational Calculus

 Three components of Relational Data
Model:

— a structural part;
— a set of integrity rules;
— a manipulative part (Query Languages).

Formal Relational Query Languages

 Two mathematical Query Languages form
the basis for “real” languages (e.g. SQL):

— Relational Algebra:
— Procedural language

— More operational, very useful for representing
execution plans

— Relational Calculus:
— Non-Procedural Language

— Lets users describe what they want, rather
than how to compute it

Basic Operators (Relational Algebra)

* Unary Operators
1. Select
2. Project

* Binary Operators
Union

Intersection
Set Difference

o U kW

Cartesian Product

Selection (or Restriction)

* The Selection operation works on a
single relation R and defines a relation
that contains only those tuples of R that
satisfy the specified condition (predicate)

* Notation is Greek symbol sigma:

S prepicare\RELATION)

Selection Example

* List all staff with a salary greater than £10,000

cjsalary > 1OOOO(Staff)

* The input relation is Staff and the predicate is:
salary > 10000

* The Selection operation defines a relation containing
only those Staff tuples with a salary greater than

£10,000. The result of this operation is shown on
next slide

Staff

staffNo | fName | IName | position |sex | DOB salary | branchNo
SL21 John White | Manager | M 1-Oct-45 30000 | BOO5
SG37 Ann Beech | Assistant | F 10-Nov-60 | 12000 | BO03
SG14 David | Ford Supervisor | M | 24-Mar-58 | 18000 | BOO3
SA9 Mary | Howe | Assistant |F 19-Feb-70 9000 | BOO7
SG5 Susan | Brand | Manager |F 3-Jun-40 24000 | BOO3
SL41 Julie Lee Assistant | F 13-Jun-65 9000 | BOO5
Gsalary > 10000(Staff)
staffNo | fName | IName | position | sex | DOB salary | branchNo
SL21 John | White |Manager | M | 1-Oct=45 | 30000 | BO0OS5
S5G37 | Ann Beech | Assistant | F 10=-Nov=60 | 12000 | BO0O3
SG14 | David |Ford |Supervisor| M | 24-Mar-58 | 18000 | BOO3
SG5 Susan |Brand | Manager | F 3=Jun-40 | 24000 | BOO3

Selection

* More complex predicates can be
generated using the logical operators:

A (AND), V (OR) and ~ (NOT)

Projection

* The Projection operation works on a single
relation R and defines a relation that contains a
vertical subset of R, extracting the values of
specified attributes and eliminating duplicates.

* Notation:

11 al, a2, ..., ak (R)

where a, ... a, are attribute names and R is a relation
name

Projection (Example)

* Produce a list of salaries for all staff, showing only
the staffNo, fName, IName, and salary details.

1_IstaffNo, fName, IName, salary(Staff)

* |n this example, the Projection operation defines
a relation that contains only the designated Staff
attributes staffNo, fName, IName, and salary, in
the specified order

* The result of this operation is shown on next slide

Projecting the Staff relation over the staffNo,
fName, IName, and salary attributes

Staff
staffNo | fName | IName | position |sex | DOB salary | branchNo
SL21 John White | Manager |M 1-Oct-45 30000 | BOO5
SG37 Ann Beech | Assistant F 10-Nov-60 | 12000 | BOO3
SG14 David | Ford Supervisor | M 24-Mar-58 | 18000 | BOO3
SA9 Mary Howe | Assistant | F 19-Feb-70 9000 | BOO7
SG5 Susan | Brand | Manager F 3-Jun-40 24000 | BOO3
SL41 Julie Lee Assistant F 13-Jun-65 9000 | BOO5

staffNo | fName | IName | salary

SL21 John White | 30000

SG37 Ann Beech 12000

5G14 David | Ford 18000

SA9 Mary Howe 2000

SG5 Susan | Brand | 24000

SL41 Julie Lee 9000

Set Operations
UnionRUS

* The union of two relations R and S defines a
relation that contains all the tuples of R and S
both, duplicate tuples being eliminated

* Rand S must be union-compatible

Union

* Union-Compatibility

— Union is possible only if the schemas of the two
relations match, that is, if they have the same
common attribute(s) having the same domain

e Union is Commutative

RUS=SUR

Coursel

Union Example

CID ProglD Cred_Hrs |CourseTitle

C2345 P1245 3 Operating Sytems

C3456 P1245 4 Database Systems

C4567 P9873 4 Financial Management

C5678 P9873 3 Money & Capital Market
Course2

CID ProglD Cred_Hrs | CourseTitle

C4567 P9873 4 Financial Management

C8944 P4567 4 Electronics

Union Example

Course 1 U Course 2

CID ProglD Cred_Hrs | CourseTitle

C2345 P1245 3 Operating Sytems

C3456 P1245 4 Database Systems

C4567 P9873 4 Financial Management
C5678 P9O873 3 Money & Capital Market
C8944 P4567 4 Electronics

Intersection RN S

* The Intersection operation defines a relation

consisting of the set of all tuples that are in
both Rand S

* Rand S must be union-compatible

 |ntersection is Commutative

RMNS=SMR

Intersection (1) Example

Course 1 [Course 2

CID ProglD Cred_Hrs | CourseTitle

C4567 P9873 4 Financial Management

Set DifferenceR-S

* The Set difference operation defines a relation

consisting of the tuples that are in relation R,
but notin S

* Rand S must be union-compatible
* Note that:

RNS=R-(R-S)

Coursel

Difference (-) Example

CID ProglD Cred_Hrs |CourseTitle

C2345 P1245 3 Operating Sytems

C3456 P1245 4 Database Systems

C4567 P9873 4 Financial Management

C5678 P9873 3 Money & Capital Market
Course2

CID ProglD Cred_Hrs | CourseTitle

C4567 P9873 4 Financial Management

C8944 P4567 4 Electronics

Coursel — Course?2

Difference (-) Example

CID ProglD Cred_Hrs | CourseTitle

C2345 P1245 3 Operating Sytems

C3456 P1245 4 Database Systems
C5678 P9O873 3 Money & Capital Market

Cartesian Product R x S

e Sets do not have to be union compatible

* The Cartesian product operation defines a
relation that is the concatenation of every tuple
of relation R with every tuple of relation S

e Also called “cross product”

Cartesian Product (X) Example

Course X Registration

Course Registration
CID ‘ CourseTitle SID StudName
C3456 | Database Systems S101 Ali Tahir
C4567 | Financial Management S103 Farah Hasan
C5678 | Money & Capital Market

Cartesian Product (X) Example

CID CourseTitle SID StudName
C3456 Database Systems S101 Ali Tahir
C4567 Financial Management S101 AliTahr
C5678 Money & Capital Market |S101 Ali Tahir
C3456 Database Systems S103 Farah Hasan
C4567 Financial Management S103 Farah Hasan
C5678 Money & Capital Market |S103 | Farah Hasan

Cartesian Product

* The Cartesian product operation multiplies two
relations to define another relation consisting of all
possible pairs of tuples from the two relations

* |f one relation has / tuples and N attributes and the
other has J tuples and M attributes, the Cartesian
product relation will contain (/ * J) tuples with
(N + M) attributes

* Itis possible that the two relations may have
attributes with the same name. In this case, the
attribute names are prefixed with the relation name
to maintain the uniqueness of attribute names
within a relation

Cartesian Product Example

List the names and comments of all clients who
have viewed a property for rent

Client relation stores names of clients
Viewing relation stores comments

To obtain the list of clients and the comments on
properties they have viewed, we need to
combine these two relations:

(:‘—IclientNo, fName, IName(C“ent)) X

(:‘—IclientNo, propertyNo, comment(VieWing))

Client Viewing
clientNo | fName | [Name | telNo prefType | maxRent clientNo | propertyNo | viewDate | comment
CR56 PAl4 24-May-04 | too small
=7 74=3 5
CR76 IU]:III Kay | 0207-774-5632 | Flat 41 X CR76 | PG4 20-Apr-04. | too remote
CR56 | Aline | Stewart | 0141-848-1825 | Flat 350 CRs6 | PG4 26-May-04
CR74 |[Mike |Ritchie | 01475-392178 | House | 750 CR62 | PAl4 14-May-04 | no dining room
CR62 |Mary | Tregear | 01224196720 | Flat 600 CR36 | PG36 28-Apr-04
client.clientNo | fName | IName | Viewing.clientNo | propertyNo | comment
CR76 John Kay CR56 PA14 too small
CR76 John Kay CR76 PG4 too remote
(M tientio, fName, IName(ClieNnt)) x gi:z ;“E“ ZF Ei: ;Ei .
PR ohn y no dining room
(HclientNo, propertyNo,comment(VleW|ng)) CR76 John Kay CR56 PG36
CR56 Aline | Stewart | CR56 PAl4 too small
CR56 Aline | Stewart | CR76 PG4 too remote
CR56 Aline | Stewart | CR56 PG4
CR56 Aline | Stewart | CR62 PAl4 no dining room
CR56 Aline | Stewart | CR56 PG36
CR74 Mike | Ritchie | CR56 PAl4 too small
CR74 Mike Ritchie | CR76 PG4 too remote
CR74 Mike Ritchie | CR56 PG4
CR74 Mike Ritchie | CR62 PAl4 no dining room
CR74 Mike Ritchie | CR56 PG36
CR62 Mary | Tregear | CR56 PAl4 too small
CR62 Mary | Tregear | CR76 PG4 too remote
CR62 Mary | Tregear | CR56 PG4
CR62 Mary [Tregear | CR62 PAl4 no dining room
CR62 Mary [Tregear | CR56 PG36

Cartesian Product Example

e Resultant relation (in the previous slide)
contains more information while we need

tuples where Client.clientNo =
Viewing.clientNo

GCIient.cIientNo = Viewing.clientNo(

(Client)) x

(“—IclientNo, fName, IName

(“lclientNo, propertyNo, comment(VieWing))

)

Restricted Cartesian product of
Client and Viewing relations

O

Client.clientNo = Viewing.clientNo(
(I
(I

(Client)) x
(Viewing))

clientNo, fName, IName

clientNo, propertyNo, comment

)

client.clientMo | fName | IName | Viewing.clientNo | propertyNo | comment

CR76 John Kay CR76 P4 too remote
CR56 Aline | Stewart | CR56 PAl4 too small
CR56 Aline Stewart | CR56 P4

CR56 Aline Stewart | CR56 P36

CRe62 Mary | Tregear | CR62 PA14 no dining room

Decomposing Complex Operations

 We can decompose such operations into a series of smaller relational
algebra operations and give a name to the results of intermediate
expressions.

 We use the assignment operation, denoted by <, to name the results
of a relational algebra operation.

* We could rewrite the previous operation as follows:

TempClient(clientNo, fName, IName) <11 (Client)

clientNo, fName, IName

TempViewing(clientNo, propertyNo, comment) < I1

) ¢ clientNo, propertyNo,
comment(VIeWIng)

Comment(clientNo, fName, IName, vclientNo, propertyNo, comment) &
TempClient x TempViewing

Result < O (Comment)

clientNo = vclientNo

Join Operations

Typically, we want only combinations of the
Cartesian product that satisfy certain conditions

Hence we use a Join operation instead of the
Cartesian product operation

Combines two relations to form a new relation

One of the essential operations in the relational
algebra

Lo W e

Types of Join Operations

. Theta join

Equijoin (a particular type of Theta join)
Natural join

Outer join

Semijoin

Theta join (0-join)

* Defines a relation that contains tuples satisfying
the predicate F from the Cartesian product of R

and S

* The predicate F is of the form R.a, 0 S.b, where 0
may be one of the comparison operators: <, <, >,
> = £

4 4

R D<Ir S

Theta join (0-join)

 We can rewrite the Theta join in terms of the
basic Selection and Cartesian product
operations:

R MFS = O'/_-(RXS)

* The degree of a Theta join is the sum of the
degrees of the operand relations Rand S

Equijoin Operation

In the case where the predicate F contains only equality (=), the
term Equijoin is used instead

Example:

List the names and comments of all clients who have viewed a
property for rent

In the previous slides, we used the Cartesian product and
Selection operations to obtain this list.

However, the same result is obtained using the Equijoin
operation:

(““clientNo, fName, IName(Cllent)) N Client.clientNo = Viewing.clientNo

+*clientNo, propertyNo, comment

(Viewing))

Equijoin

Rows are joined on the basis of values of a
common attribute between the two relations

Rows having the same value in the common
attribute are joined

Common attributes appear twice in the
output

Common attribute with the same name is
qualified with the relation name in the output

Equijoin Example

FACULTY COURSE
facld | facName |dept |salary |rank crCode |crTitle facld
F2345 | Usman CSE 21000 | lecturer C3456 Database Systems | F2345
F3456 | Tahir CSE 23000 | Asso Prof C4567 Financial
F4567 | Ayesha | ENG | 27000 | Asso Prof Management
F5678 |Samad | MNG | 32000 |Professor | | 2078 | Money & Capital) F4S67
Market
C3425 Introduction to F2345

FACULTY

N FACULTY.facld = COURSE.facld

Accounting

COURSE

Equijoin Example

FACULTY

E j FACULTY.facld = COURSE.facld

COURSE

ACULTY.| tacName |dept |salary | Rank crCode | crTitle COURSE.

acld facld

F2345 Usman CSE | 21000 | lecturer C3456 | Database Systems | F2345

F4567 Ayesha ENG |27000 |AssoProf |C9678 Money & Capital | F4567
Market

F2345 Usman CSE 21000 | lecturer C3425 Introduction to F2345
Accounting

Natural Join R[> S

Also called simply the join
The most general form of join

The Natural join is an Equijoin of the two
relations R and S over all common attributes x

One occurrence of each common attribute is
eliminated from the result

Natural Join Example

FACULTY COURSE
facld | facName |dept |salary |rank crCode |crTitle facld
F2345 | Usman CSE 21000 | lecturer C3456 Database Systems | F2345
F3456 | Tahir CSE 23000 | Asso Prof C4567 Financial
F4567 | Ayesha | ENG | 27000 | Asso Prof Management
F5678 | Samad | MNG | 32000 | Professor | [278 | Money & Capital) FaS67
Market
C3425 Introduction to F2345
Accounting

FACULTY [D><]I COURSE

Natural Join Example

FACULTY [D><I COURSE

facld | facName |dept |salary |Rank crCode | crTitle

F2345 | Usman CSE [21000 | lecturer C3456 | Database Systems

F4567 | Ayesha | ENG | 27000 | AssoProf |C9678 monfy&capita'
arket

F2345 | Usman CSE 21000 | lecturer C3425 Introduction to
Accounting

Outer Joins

* Often in joining two relations, a tuple in one
relation does not have a matching tuple in the
other relation; in other words, there is no
matching value in the join attributes

 We may want tuples from one of the relations
to appear in the result even when there are no
matching values in the other relation. This may
be accomplished using the Outer join.

* Types:
— Left Outer Join
— Right Outer Join
— Full Outer Join

Left Outer Join R>S

* The Left Outer Join is a join in which tuples
from R that do not have matching values in
the common attributes of S are also included
in the result relation. Missing values in the
second relation are set to null

 The advantage of an Outer join is that
information is preserved, that is, the Outer
join preserves tuples that would have been
lost by other types of join

Left Outer Join

FACULTY COURSE
Example
facld |facName |dept |salary |rank crCode | crTitle facld
F2345 | Usman CSE 21000 | lecturer C3456 Database Systems | F2345
F3456 | Tahir CSE 23000 | Asso Prof C4567 Financial
F4567 | Ayesha | ENG | 27000 | Asso Prof Management
F5678 | Samad MNG | 32000 | Professor €678 Money & Capital | F4567
Market
C3425 Introduction to F2345
Accounting
facld | facName | dept salary | rank crCode crTitle facld
F2345 | Usman CSE 21000 | lecturer C3456 Database Systems F2345
F2345 | Usman CSE 21000 | lecturer C3425 Intro. To Accounting | F2345
F3456 | Tahir CSE 23000 | Asso Prof
F4567 | Ayesha | ENG | 27000 | AssoProf | c5g7g | Money & Capital Market | p4567
F5678 | Samad MNG | 32000 | Professor

Right Outer Join RPXS

Same as the left, but keep tuples from the
“right” relation

Right Outer

FACULTY COURSE Join Example
facld |facName |dept |salary |rank crCode |crTitle facld
F2345 | Usman CSE 21000 | lecturer C3456 Database Systems | F2345
F3456 | Tahir CSE | 23000 | Asso Prof C4567 Financial
F4567 | Ayesha |ENG | 27000 | Asso Prof Management
F5678 |Samad | MNG | 32000 |Professor | | <278 | Money & Capital) F4S67

Market

C3425 Introduction to F2345

Accounting
facld | facName | dept salary | rank crCode crTitle facld
F2345 | Usman CSE 21000 | lecturer C3456 Database Systems F2345

C4567 Financial Management
Money & Capital

FA4567 | Ayesha ENG | 27000 | Asso Prof | C5678 Market F4567
F2345 | Usman CSE | 21000 | lecturer C3425 | Intro. ToAccounting | F2345

Full Outer Join

All matching tuples plus all non-matching tuples
from both relations

FACULTY

COURSE

Full Outer Join

Example
facld | facName |dept |salary | rank crCode |crTitle facld
F2345 | Usman CSE 21000 | lecturer C3456 Database Systems | F2345
F3456 | Tahir CSE | 23000 | Asso Prof C4567 Financial
F4567 | Ayesha ENG | 27000 | Asso Prof Management
F5678 | Samad | MNG | 32000 | Professor Co678 | Money & Capital | F4567

Market

C3425 Introduction to F2345

Accounting
facld | facName | dept salary | rank crCode crTitle facld
F2345 | Usman CSE 21000 | lecturer C3456 Database Systems F2345
F2345 | Usman CSE | 21000 | lecturer C3425 Intro. To Accounting F2345
F4567 | Ayesha | ENG | 27000 | AssoProf | C5678 mgﬂfe{ < (CagliE F4567
F3456 | Tahir CSE | 23000 | Asso Prof
F5678 | Samad MNG | 32000 | Professor

C4567 Financial Management

SemijoinR >, S

* Asemijoin from R; to R; on attribute A can be

denotedas R, [> R; Itisused to reduce the data

transmission cost
* Computing steps:
1) Project R; on attribute A (I, R)) and ship this

projection (a semijoin projection) from the
site of R; to the site of R;;

2) Reduce R; to Rj by ellmlnatlng tuples where
attribute’A aré not matching any value in R [A]

Semijoin Example

W NP>

ol v | | @

1

/ :

. g 3
projettion

R,[A]

m

R2
A C
3 7
4 8
5 9
l reduce
3 7
R,

49

Division Operation R+ S

e Suppose Cis the set of attributes of R that are not
attributes of S

 The Division operation defines a relation over the
attributes C that consists of the set of tuples from
R that match the combination of every tuple in S

* We can express the Division operation in terms of
the basic operations:

T, & T (R)
T,4 I1.((T1xS) - R)
T <& "1 - Tz

Division Operation V = W Example
Let Cis the set of attributes of V that are not attributes of W.
Hence C = attribute A

Vv w T,¢ I1,(V) T, XW (T,XW)-V T,6 I1,((T, x W) - V) T¢<T,-T,
A5 e A o oa D A
a 1 1 a a 1 c 2 C a
a 2 2 a A | b
b 1 b b 1
b 2 b b 1
c 1 C c 1

a 2

= T,< T1-(R)

1 T,& TI((T1x S) - R)

- T<T,-T,

Examples of Division A/B

Sno |pno
sl |pl
sl |p2
sl |p3
sl |p4
s2 |pl
s2 |p2
s3 |p2
s4 |p2
s4 |p4
A

pno

p2

B1

SNO

s1

s2

s4

A/B1

SNO

s1

s4

A/B2

SNO

s1

A/B3

More Examples of Relational Algebra Queries
Find names of sailors who've reserved boat #103

Solutionl: Templ < 0p;4=103 (Reserves)
Temp2 < (Templwd Sailors)

n sname (Temp 2)

Solution2: T ¢gme (O pid=103 (Reserves ™ Sailors))

Solution3: T ¢gme ((Opig=103 (Reserves)) M Sailors)

Sailors

sid |sname |rating |age
22 |Dustin 4 45.0
29 |Brutus 1 33.0
31 |Lubber| 8 55.5
32 |Andy 8 25.5
58 |Rusty 10 |35.0
64 |Horatio| 7 35.0
71 |Zorba 10 16.0
74 |Horatio| 9 35.0
85 |Art 3 25.5
95 |Bob 3 63.5
bid |bname |color
Boats | 101 [Interlake | Blue
102 |Interlake | Red

103 |Clipper Green

104 |Marine Red

Reserves

sid |bid day
22 (101 10/10/98
22 1102 |10/10/98
22 103 |10/8/98
22 1104 |10/7/98
31 102 |11/10/98
31 103 |11/6/98
31 104 |11/12/98
64 |[101 |9/5/98
64 [102 |9/8/98
74 (103 |9/5/98

Find names of sailors who’ve reserved a red boat
* Information about boat color only available in
Boats; so need an extra join:

T o , .Boats) >« Reservesr< Sailors
sname((color =red))

% A more efficient solution:

ﬂsname(ﬂsid((ﬂbidGcolorz' red Boats) >« Res)>< Sailors)

A query optimizer can find this, given the first solution!

Summary

* Relational algebra is more operational; useful
as internal representation for query evaluation

plans

e Several ways of expressing a given query; a
query optimizer should choose the most

efficient version

Relational Calculus

Relational Calculus

* Relational calculus is a non-
procedural formal data manipulation
language

* Simply specifies what data should be
retrieved

Relational Calculus

* There is no description of how to
evaluate a query

* A Relational Calculus query specifies
what is to be retrieved rather than
how to retrieve it

* Relational Calculus takes its name from
a branch of symbolic logic called
predicate calculus

Relational Calculus

In predicate calculus, a predicate is a truth-valued
function with arguments

When we substitute values for the arguments, the
function yields an expression, called a proposition, which
can be either true or false

For example, the sentences:

— ‘John White is a member of staff’ and

— ‘John White earns more than Ann Beech’

are both propositions, since we can determine whether
they are true or false.

In the first case, we have a function, ‘is a member of
staff’, with one argument (John White)

In the second case, we have a function, ‘earns more
than’, with two arguments (John White and Ann Beech)

Relational Calculus

* If a predicate contains a variable, as in ‘x is a
member of staff’, there must be an associated
range for x

* When we substitute some values of this range
for x, the proposition may be true; for other
values, it may be false

* For example, if the range is the set of all
people and we replace x by John White, the
proposition John White is a member of staff’
IS true

* If we replace x by the name of a person who is
not a member of staff, the proposition is false

Relational Calculus

e Comesintwo forms

1. Tuple Relational Calculus

2. Domain Relation Calculus

Tuple Relational Calculus

Here we are interested in finding tuples for which
a predicate is True

The calculus is based on the use of tuple variables

A tuple variable is a variable that ‘ranges over’ a
named relation: that s, a variable whose only
permitted values are tuples of the relation

For example, to specify the range of a tuple
variable S over the Staff relation, we write:

Staff(S)

To express the query ‘Find the set of all tuples S
such that F(S) is true’, we can write:

{S | F(S)}

Tuple Relational Calculus

F is called a formula (well-formed formula, or
wff in mathematical logic)

For example, to express the query ‘Show all
attributes of staff earning more than £10,000’,
we can write:

{S | Staff(S) A S.salary > 10000}

S.salary means the value of the salary attribute
for the tuple variable S

To retrieve a particular attribute, such as salary,
we would write:

{S.salary | Staff(S) A S.salary > 10000}

branchMNo | street city postcode
Branch

BOOS 22 Deer Bd | London | SWI1 4EH

BOO7 16 Argyll 5t | Aberdeen | AB2 35U

BOOD3 163 Main 5t | Glasgow | G11 90X

BO04 32 Manze Bd | Bristol B599 INZ

BOO2 56 Clover Dr | London | NW10 6EU

Staff

staffMo | fName | IName | position Do salary | branchNo

1-Cct-45 | 30000 | BODS
10=MNov=60 | 12000 | BOO3
24=Mar=58 | 18000 | BOD3
19-Feb=70 | 9000 | BOOT
J=Jun=40 | 24000 | BOO3
13=Jun=65 | 9000 | BODS

5121 John White | Manager
50337 Ann Beech | Aszistant
Sa14 David | Ford | Supervisor
SAS Mary | Howe | Asziztant
S35 Susan | Brand | Manager
SLA4]1 Julie Lee Aszzigtant

Expressions and formulae

An expression in the tuple relational calculus has
the following general form:

{S,.a,, S,.a,,...,S..a, | F(S, S,,..,S,,)}m2 n

* whereS,,S,, ..., S, ..., S, are tuple variables

* each a, is an attribute of the relation over
which S, ranges

e Fisaformula

Expressions and formulae

A (well-formed) formula is made out of one or more atoms, where an
atom has one of the following forms:

° R(S)
where S. is a tuple variable and R is a relation
. S.a; 08,3,
where S; and §; are tuple variables
a, is an attribute of the relation over which S, ranges
a, is an attribute of the relation over which S, ranges
0 is one of the comparison operators (<, >, 2, <, #, =)
. S.a,0c
where S. is a tuple variable
a, is an attribute of the relation over which S, ranges
c is a constant from the domain of attribute a,
0 is one of the comparison operators

The Existential and Universal Quantifiers

* There are two quantifiers we can use with
formulae to tell how many instances the
predicate applies to

* The existential quantifier 3 (‘there exists’) is
used in formulae that must be true for at least
one instance, such as:

Staff(S) A (3B) (Branch(B) A
(B.branchNo = S.branchNo) A B.city = ‘London’)

* This means, ‘There exists a Branch tuple that
has the same branchNo as the branchNo of the
current Staff tuple, S, and is located in London’

The Universal Quantifier

* The universal quantifier V (‘for all’) is used in
statements about every instance, such as:

(VB) (B.city # ‘Paris’)

* This means, ‘For all Branch tuples, the city is
not Paris’

OR ~(3B) (B.city = ‘Paris’)

which means, ‘There is not a single branch with
city equals to Paris’

Bound Variables & Free Variables

* Tuple variables that are qualified by V or 3 are
called bound variables, otherwise the tuple
variables are called free variables

* The only free variables in a relational calculus

expression should be those on the left side of
the bar (|)

* For example, in the following query:

{S.fName, S.IName | Staff(S) A (3B) (Branch(B) A
(B.branchNo = S.branchNo) A B.city = ‘London’)}

* Sisthe only free variable and S is then bound
to each tuple of Staff relation

Tuple Relational Calculus Examples

* List the names of all managers who earn more
than £25,000.

{S.fName, S.IName | Staff(S) A S.position =
‘Manager’ A S.salary > 25000}

* (b) List the staff who manage properties for
rent in Glasgow

{S | Staff(S) A (3P) (PropertyForRent(P) A
(P.staffNo = S.staffNo) A P.city = ‘Glasgow’)}

Staff

staffMo [fName | IName | position | sex | DOB salary | branchNo

5L21 John | White | Manager (M | 1-Oct-45 | 30000 | BOOS

537 | Ann Beech | Assistant | F | 10-Nov-60 | 12000 | BOO3

SG14 | David |Ford | Sopervisor | M | 24-Mar<58 | 18000 | BOD3

SA9 Mary | Howe |Assistant |F 19-Feb=70 | 9000 | BOO7

303 Susan | Brand | Manager |(F | 3=Jun=dD | 24000 |BO03

SLA4l Julie Lee Assistant | F 13=Jun=65 | 9000 | BDO3

PropertyForRent

propertyNo | streel city postcode | type | rooms | rent | ownerNo | staffNo | branchNo
PA14 16 Holhead Aberdeen | AB7 535U | House | 6 650 | CO4a SA9 BOOT
PL%4 6 Argyll 5t London | NW2 Flat |4 400 | COR7 SL41 BO0S
P4 6 Lawrence 5t | Glasgow [G1190QX | Flat |3 350 [CO40 BO03
PG36 2 Manor Rd | Glasgow | G3240X [Flat |3 375 | CO93 5G37 | BOO3
PG21 18 Dale Rd | Glasgow | G12 House | 5 600 | COR7 $G37 | BoD3
P16 5 Movar Dr | Glasgow | G129AX | Flat |4 450 | CO93 5014 B003

Safety of Expressions

It is possible for a calculus expression to generate an
infinite set. For example

{S | ~ Staff(S)}
Means the set of all tuples that are not in the Staff
relation
Such an expression is said to be unsafe

To avoid this, we have to add a restriction that all values
that appear in the result must be values in the domain of
the relation(s) appearing in the expression

Domain Relational Calculus

e We also use variables but in this case the
variables take their values from domains of
attributes rather than tuples of relations

e General form of domain relational calculus
expression:

id,d,,...,d | Fd,d,...,d)imzn
* whered,, d,, ..., d represent domain variables

Staff

staffNo | fName | IName | position | sex | DOB salary | branchNo
S5L21 |John | White | Manager |M | 1-Oct-45 | 30000 | BOOS
SG37 [Ann | Beech |Assistant [F [10-Now=60 | 12000 | BOD3
SGI4 [David | Ford | Supervisor (M | 24-Mar58 | 18000 | BOD3
SAY Mary |Howe |[Assistant |F | 19-Feb=70 | 9000 | BOOT
3 Susan | Brand | Manager |[F | 3=Jun=d0 | 24000 | BOD3
SLAl Julie | Lee Azsistant |F | 13=Jun=b3 | 9000 | BOOS

Domain Relational Calculus

* Find the first and last names of all managers who
earn more than £25,000

 {fN, IN | (3sN, posn, gender, dob, sal, bN)
(Staff(sN, fN, IN, posn, gender, dob, sal, bN)
A posn = ‘Manager’ A sal > 25000)}

* Here, each attribute is given a (variable) name

Domain Relational Calculus

* When the domain relational calculus is restricted to
safe expressions, it is equivalent to the tuple
relational calculus restricted to safe expressions,
which in turn is equivalent to the relational algebra

* This means that for every relational algebra

ex
re
Cd
ex
ex

oression there is an equivalent expression in the
ational calculus (tuple or domain relational
culus), and for every relational calculus
oression there is an equivalent relational algebra
oression

Chapter Summary

Relational algebra and relational calculus are equivalent to one
another: for every expression in the algebra, there is an equivalent
expression in the calculus (and vice versa).

Relational calculus is used to measure the selective power of
relational languages

A language (e.g. SQL) that can be used to produce any relation
which can be derived using the relational calculus is said to be
relationally complete

Most relational query languages are relationally complete but
have more expressive power than the relational algebra or
relational calculus because of additional operations such as
calculated summary and ordering functions

